217
Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress
Fujita, Y., Fujita, M., Shinozaki, K., & Yamaguchi-Shinozaki, K., (2011). ABA-mediated
transcriptional regulation in response to osmotic stress in plants. J. Plant Res., 124, 509–525.
Fujita, Y., Nakashima, K., Yoshida, T., Fujita, M., Shinozaki, K., & Yamaguchi-Shinozaki, K.,
(2014). Role of abscisic acid signaling in drought tolerance and pre-harvest sprouting under
climate change. In: Tuteja, N., & Gill, S. S., (eds.), Climate Change and Plant Abiotic Stress
Tolerance (p. 521553). Wiley-VCH Verlag GmbH and Co. Weinheim Germany.
Fujita, Y., Yoshida, T., & Yamaguchi-Shinozaki, K., (2013). Pivotal role of the AREB/ABF–
SnRK2 pathway in ABRE mediated transcription in response to osmotic stress in plants.
Physiol. Plant., 147, 15–27.
Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., & Yamaguchi,
S. K., (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a
transcription activator AREB1. Proc. Natl. Acad. Sci. USA, 103, 1988–1993.
Gao, F., Zhou, J., Deng, R. Y., Zhao, H. X., Li, C. L., Chen, H., Suzuki, T., Park, S. U., & Wu,
Q., (2017). Overexpression of a Tartary buckwheat R2R3-MYB transcription factor gene,
FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. J. Plant
Physiol., 214, 81–90.
Gao, H., Wang, Y., Xu, P., & Zhang, Z., (2018). Overexpression of a WRKY transcription
factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front. Plant Sci.,
9, 997.
Gao, S. Q., Chen, M., Xu, Z. S., Zhao, C. P., Li, L., Xu, H. J., Tang, Y. M., et al., (2011).
The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in
transgenic plants. Plant Mol. Biol., 75, 537–553.
Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Choi, Y. D., Kochian, L. V., & Wu, R.
J., (2002). Trehalose accumulation in rice plants confers high tolerance levels to different
abiotic stresses. Proc. Natl. Acad. Sci. USA, 99, 15898–15903.
Gilmour, S. J., Fowler, S. G., & Thomashow, M. F., (2004). Arabidopsis transcriptional
activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol. Biol.,
54, 767–781.
Gitzinger, M., Parsons, J., Reski, R., & Fussenegger, M., (2009). Functional cross-kingdom
conservation of mammalian and moss (Physcomitrella patens) transcription, translation
and secretion machineries. Plant Biotechnol. J., 7, 73–86.
Goddijn, O. J. M., & Van, D. K., (1999). Trehalose metabolism in plants. Trends Plant Sci.,
4, 315–319.
Goel, D., Singh, A. K., Yadav, V., Babbar, S. B., Murata, N., & Bansal, K. C., (2011).
Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water
stresses. J. Plant Physiol., 168, 1286–1294.
Gong, Q., Li, S., Zheng, Y., Duan, H., Xiao, F., Zhuang, Y., He, J., et al., (2020). SUMOylation
of MYB30 enhances salt tolerance by elevating alternative respiration via transcriptionally
upregulating AOX1a in Arabidopsis. Plant J., 102, 1157–1171.
Gong, X., Zhang, J., Hu, J., Wang, W., Wu, H., Zhang, Q., & Liu, J. H., (2015). FcWRKY70,
a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates
putrescine synthesis by regulating arginine decarboxylase gene. Plant Cell Environ., 38,
2248–2262.
Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M. H., Grunwald, D., & Macherel,
D., (2005). Identification in pea seed mitochondria of a late-embryogenesis abundant
protein able to protect enzymes from drying. Plant Physiol., 137, 157–167.